

eduVPN

Told by Danes* to Swedes

Tangui Coulouarn & François Kooman, DeiC

Sunet Dagarna 2024, Uppsala, Sweden 23 April 2024

Summary

- eduVPN is an edu service built by collaboration of several NRENs, supported by GÉANT
- Free Open Source Software
- Customized for our community and users
- Tested and audited
- Regular security updates and evolution
- Used in production by 150+ universities and 19 NRENs

How did it start?

- Innovation programme at SURF in 2014
- Realisation that staff and students used a lot of shady VPN services
- First use case: Secure Internet, i.e. access the public internet through trusted gateways

The Institute Access use case

- Replace the corporate VPN solution to let staff and students access resources on a private network
- Tricky due to procurement cycles
- Early adoption in the NL

Requirements (1)

- Use of open source software as a security requirement: OpenVPN (then)
- Integration with IdM used at universities
 - Do not require users to know the server name, but allow them to search for their institute
 - Re-use the credentials from their institute in a safe way (through browser WebSSO)
- NREN perspective: Allow for hosting the server elsewhere and have a L2 connection to the institute
 - --> here WebSSO is even more important... no need to give credentials to VPN provider

Requirements (2)

- Scale beyond 1 server (not just fail-over)
- Native IPv6 support out of the box
- Available as OS packages on most common Linux server operating systems
 - Easy install
 - But more important: easy updates (apt, yum, dnf)
- No per-seat licensing, so you only pay for hardware (and server administration)

eduVPN today

- VPN software package with
 - server side components
 - client apps for Linux, Windows, iOS/macOS and Android
- Supports WireGuard and OpenVPN
- Integrates well with identity management systems at universities (SAML, LDAP, RADIUS, OpenID Connect, Client certificates)
- Granular profiles + possibility to provision managed devices
- Scales from raspberry pi to multi-node deployments

See https://docs.eduvpn.org/server/v3/ for full feature list

eduVPN today (2)

- Used in production by universities (Institute Access) and NRENs (Secure Internet)
- Also used outside R&E as "Let's Connect!" (+ collaboration with govroam). Apps can be rebranded.
- Software governance via The Commons Conservancy foundation
- Service governance via GÉANT
- 2 main models of deployment: run-by-university or managed by NREN

eduVPN today (3)

- At least 156 universities and 19 NREN deployments
- Used in (at least) 38 countries
- Most successful in NL (27), Germany (29 universities)
- One university server in Sweden

Regular audits

Date	Туре	Ву
Q4-2016	Server audit	Radically Open Security
Q4-2017	Windows app audit	Fox-IT
Q1-2018	Server audit	Radboud University
Q3-2018	Android app audit	GÉANT
Q4-2018	iOS/macOS app audit	Radically Open Security
Q4-2019	TunnelKit (iOS/macOS) library "fuzzing"	Guido Vranken
Q4-2020	SAML (php-saml-sp) audit	Cure53
Q1-2021	iOS/macOS app audit	Midnight Blue
Q4-2022	3.x Server audit	Cure53
Q4-2022	Go-library audit (new linux client)	Radically Open Security

For comparison: cost of commercial VPN solution at a Danish University

- 11000 students and 6000 staff
- Requirements/features:
 - 1000 concurrent users;
 - Hardware with 10Gbps interfaces;
 - Differentiated access to services according to type of user, equipment used.
- Cost in 2019: 100 kEUR for hardware + 35 kEUR in licenses for 3 years
- Huge supplement for extra licences paid when COVID19 to be able to serve more users
- Cheap extra license renewal in 2022 for 3 years (10kEUR)
- UX is not impressive: username and password + microsoft second factor
- Maintained by the IT department
- Includes hardware but not network costs, maintenance, power, etc.

Deployment example 1: Stand-alone instance. Otago University

- Need to scale up because of CoVID-19: existing VPN used nearly EOL hardware. Needed to either buy new concentrators for 500 kNZD (275kEUR) or look at alternatives
- Requirement for MFA
- Choice of eduVPN because they could reuse existing compute hardware + use of SAML and by extension leverage Azure Active Directory / Microsoft Entra ID with conditional access (MFA)
- Use of php-saml-sp as it was easier to setup with Azure AD working out of the box with minimal changes

Deployment example 2: eduVPN on shared resources. LRZ in Germany.

- Regional computing centre providing network for several higher education institutions in the Munich area
- During pandemic, often 6000+ concurrent users
- Their solution was EOL
- Standard OpenVPN tested but lacked features (including automatic client configuration updates)
- Now operates eduVPN for most institutions in the greater Munich area
 - Single server for each of the three biggest universities based on VPN user access: TUM, LMU and HM;
 - one "catch all" server for the other institutions;
 - one dedicated server for LRZ.
- See Markus' presentation: <u>https://events.geant.org/event/1515/contributions/1696/attachments/954/1472/eduvpn-GSD-2024-04.pdf</u>

eduVPN Migration
eduVPN Migration Time Line

Deployment example 3: Institute Access as a Managed Service for a whole NREN

- Model currently implemented in the Netherlands (.BE .NO same implementation model)
- eduVPN instance managed centrally by SURF
- L2 circuit back to the private resource
- Support by SURF
- No need for hardware on campus or licensing limitations

4 most asked features

- Multi Factor Authentication
- High Availability / Redundancy (HA/R)
- Real Time Authorization
- Managed devices

Multi-Factor Authentication

- "First Factor": Username & Password
- "Second Factor": (T)OTP, Hardware Token, WebAuthn, Biometrics, ...
- Where does MFA belong?
 - Service
 - IdM

- We chose for not managing MFA for the institutes
 - MFA in IdM
 - MFA in separate system, e.g. PrivacyIDEA

HA/R (1)

- Architecture
 - Portal / controller
 - Web interface, API, Database, Authentication, Authorization, Logging, (Server) Administration, ...
 - Node
 - Handles VPN connections
- Each component takes different approach
 - Portal
 - HA/R DB, Session Storage, Hot Spare, Failover, ...
 - Node
 - Simply have >1 and have the portal(s) direct user to one that is "up"
 - Complexity obviously in the Portal

HA/R (2)

- Portal
 - memcached (Session Storage)
 - PostgreSQL / MariaDB* (Database)
 - keepalived (Failover)
- Node
 - When a client connects, it is directed to a "Node"
 - ... that is "up"
 - ... not under heavy load*

Real time authentication

- Common in R&E to use SAML ("WebSSO Profile")
 - Session is a valid for ~8 hours
 - No way to verify session after initial authentication
 - User disabled?
 - Permissions changed?
 - Having users authenticate (possibly with MFA) every 8 hours is *not* great UX...
- Some Ideas
 - Use SAML for Authentication, LDAP for "Real Time" Authorization
 - Use OpenID Connect for Authentication and "Real Time" Authorization*

Managed devices (1)

- Devices owned and managed by the organization "System VPN"
 - Bound to device, not necessarily user
 - Always on
 - Active before user authenticates to device
 - For example: Kerberos/LDAP/AD only reachable over VPN
- Enrollment
 - Obtain a per device VPN configuration file through the eduVPN Server "Admin API"
 - Deploy WireGuard on device
 - Copy a device specific VPN configuration file to device
 - Enable WireGuard service on system boot
- Conceptually it is very easy!

Managed devices (2)

- Practice
 - GPO works for Windows, but not (out of the box) with macOS
 - Intune works for Windows and macOS, but you can't send a (device specific) configuration file to the device from what we understand...
- Approaches
 - Try to make Intune work anyway (script runs on device to obtain configuration)
 - Take separate approaches for macOS and Windows
- Pilot with institute in NL this year If you know an organization that has:
- Windows / macOS Managed Devices
 - Uses Intune and/or GPOs, or other software to control the devices
 - Wants to use eduVPN
 - Have the knowledge/resources to help us test it and provide feedback

Roadmap

- 3.x
 - WireGuard + TCP
 - Already works! (except on iOS/macOS)
 - Some networks block UDP, or have MTU issues
 - Send WireGuard traffic over TCP (actually, over TLS through the Web Server in (Reverse) Proxy Mode
- 4.x (Release: 2025-05?)
 - Drop OpenVPN
 - "User Defined" Networks
 - Move Server Configuration to DB
 - Allow server admins to change (some) configuration through Web UI

Set up your own eduVPN instance in 6 steps

- 1. get a VM with one of the supported OSes
- 2. follow the deploy instructions
- 3. configure network (if necessary)
- 4. configure authentication
- 5. test server with eduVPN apps (by specifying hostname in search box)
- 6. request to be registered in eduVPN apps https://docs.eduvpn.org/server/v3/#installation

Contact

eduVPN Team: eduVPN Team: eduvpn-support@lists.geant.org

Web: https://www.eduvpn.org

Thank You

Any questions?

www.geant.org

The Commons Conservancy

- Commons Conservancy is an 'organisation hypervisor' that can spawn and support virtual open source foundations
- Each Programme runs independently from all the others, in perfect isolation
- Each Programme determines its own operating environment (such as bylaws) with templates provided, and has own infrastructure (website etc.)
- Templates to manage the legal stuff + support for the financial stuff

